If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x=148
We move all terms to the left:
x^2+8x-(148)=0
a = 1; b = 8; c = -148;
Δ = b2-4ac
Δ = 82-4·1·(-148)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{41}}{2*1}=\frac{-8-4\sqrt{41}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{41}}{2*1}=\frac{-8+4\sqrt{41}}{2} $
| 19–6=x-5 | | b+3+2(b+3)+b=57 | | 6t-+5t=105 | | x+1/12=7/6 | | 5b^2-16=0 | | (4x+5)(x=3) | | 18=r/2.5 | | 21x+14=14x+35 | | 2/7x9/8= | | (t-79)/5=3 | | (1/3x100,000)=+(1/3x200,000) | | 54=m×6 | | x-17=2x+20 | | 3c+20=7c | | P(q)=−0.01(q−250)(q−80) | | 113=(2x+7) | | 7k-35=5+12k | | 5(k-2)-8k=20 | | 2x+7=5(x-2) | | –4z=–3z+8 | | 3÷2x=19 | | 3x=5.7-18 | | 2g+32=74 | | 0.25x+0.15(100-x)=18 | | 0.5=0.8r+0.2 | | 8d=36 | | O.7=35z | | x+3x-7=24 | | 0.33=0.5y+0.8 | | 30n-40=40 | | 8+5n=–8+3n | | 5y-7+9=-4y+3+3y |